Zuordnungen, Proportionalität: kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
- Relationen (Mathematik)
Seien M, N Mengen so ist jede Teilmenge R von M times N eine Relation. - Schnittpunkte zweier Funktionen berechnen
Schnittpunkte von Funktionen sind die Punkte, an denen beide Funktionen den gleichen y-Wert besitzen. Mit diesem Wissen kann man die Schnittpunkte berechnen. - Definitionsbereich bestimmen (Mathematik)
Den Definitionsbereich einer Funktion oder eines Terms bestimmt man, indem man untersucht, ob einzelne Teile des (Funktions)terms für bestimmte Zahlenbereiche nicht definiert sind. Zahlen aus diesen Bereichen muss man - Umkehrfunktion (Mathematik)
Die Umkehrfunktion einer Funktion f ist die Funktion, die jedem Funktionswert sein Argument zuordnet. - Graph einer Funktion (Mathematik)
Der Graph G_f einer Funktion ist ihre graphische Repräsentation in der Ebene. Er kann formal als die Menge von Punkten gesehen werden, bei denen die x-Koordinate aus dem Definitionsbereich der Funktion ist und die y-Koordinate der Funktionswert der x-Koordinate. - Definitionsbereich einer Funktion (Mathematik)
Der Definitionsbereich (auch: Definitionsmenge) gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen. - Parameter und Koeffizient (Mathematik)
Ein Parameter, meist als a, b oder k benannt, ist ähnlich einer Variablen nicht auf einen bestimmten Wert festgelegt. Trotzdem wird mit ihm wie mit einem festen Wert gerechnet. Ein Parameter steht fast immer in direkter Verbindung mit einer Variablen. - CompuLearn Mathematik
Der Mathematiktrainer CompuLearn bietet über 4900 Aufgaben zu den Themen Bruchrechnung, Prozent- und Zinsrechnung, Terme, Lineare und Quadratische Funktionen, Wurzel- und Potenzrechnung, Logarithmen und Trigonometrie. Zusätzlich sind vielfältige Aufgaben zur Geometrie enthalten. Im Internet steht eine Probeversion zur Verfügung, mit der man bereits üben kann. Die volle Nutzung des Angebots ist kostenpflichtig, die Seite bietet jedoch Übungen gratis zum Ausprobieren an. - Funktionsgraphen stauchen und strecken
Prinziell streckt man den Graphen einer Funktion in y-Richtungum Faktor a, indem man den Funktionsterm mit a multipliziert. - Prozentrechnung mittels Dreisatz
Eine Dreisatzberechnung kann bei vielen Umformungen helfen. Auch bei der Prozentrechnung kommt man mit einem Dreisatz und zwei kurzen Denk- und Rechenschritten oft ans Ziel. Alle drei möglichen Aufgabentypen (Prozentwert, Grundwert und Prozentsatz suchen) sind durch Dreisätze lösbar! - Funktionsgraphen verschieben
Die Verschiebung eines Funktionsgraphen in y-Richtung wird durch Addition oder Subtraktion einer Zahl a zum Funktionsterm realisiert. Eine Verschiebung in x-Richtung erreicht man durch das Ersetzen des Argumentsx durch x+a oder x-a. - Konstante und Variable (Mathematik)
Beim betrachten von Funktionen fallen manchmal die Begriffe "variable" und "konstante". Man bezieht sich hierbei auf das Verhalten einer Zahl, wenn man das Funktionsargument verändert. Ist sie veränderlich, so nennt man sie variabel, bleibt sie gleich, heißt sie Konstante. - Funktion (Mathematik)
Eine Funktion ist eine Vorschrift, die jedem Element x aus einer Menge (der Definitionsmenge ) eindeutig ein Element y einer anderen Menge (der Wertemenge ) zuordnet. - Leifi: Lösen von Verhältnisgleichungen
Auf dieser Internet-Seite von leifiphysik.de wird sehr anschaulich und interaktiv geklärt, wie man Verhältnisgleichungen löst. - Eigenschaften proportionaler Zuordnungen
Auf dieser Seite des Landesbildungsservers Baden-Württemberg wird anschaulich erklärt, was die wesentlichen Eigenschaften proportionaler Zuordnungen sind.