Winkelfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (18)

Ergebnis der Suche nach: (Freitext: WINKELFUNKTION)

Es wurden 225 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 12 13 14 15 16 17 18 19 20 21 22 23 Eine Seite vor Zur letzten Seite

Treffer:
171 bis 180
  • Schaubilder von Funktionen: Glockenkurve | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009207" }

  • Einfache trigonometrische Gleichungen lösen, Beispiel 2 | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009458" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009476" }

  • Einfache trigonometrische Gleichungen lösen, Beispiel 3 | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009459" }

  • Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden, Beispiel 6 | A.14.01

    Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008820" }

  • Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 3 | A.54.02

    Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum „Addieren“ sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum „Multiplizieren“ sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009729" }

  • Schaubilder von Funktionen: ganzrationale Funktion | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009200" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 2 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009744" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009485" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 6 | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009095" }

Seite:
Zur ersten Seite Eine Seite zurück 12 13 14 15 16 17 18 19 20 21 22 23 Eine Seite vor Zur letzten Seite