Winkelfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (17)

Ergebnis der Suche nach: (Freitext: WINKELFUNKTION)

Es wurden 225 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 11 12 13 14 15 16 17 18 19 20 21 22 Eine Seite vor Zur letzten Seite

Treffer:
161 bis 170
  • Komplexe Zahlen dividieren und Kehrwert bilden | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009742" }

  • Periode von trigonometrischen Funktionen berechnen, Beispiel 2 | A.42.01

    Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009454" }

  • Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden, Beispiel 5 | A.14.01

    Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008819" }

  • Schaubild einer trigonometrischen Funktion erstellen, Beispiel 3 | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009491" }

  • Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 8 | A.54.02

    Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum „Addieren“ sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum „Multiplizieren“ sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009734" }

  • Schaubilder von Funktionen | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009199" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 5 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009747" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 4 | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009093" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 4 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009480" }

  • Kurvendiskussion Beispiel 3b: Funktion auf Symmetrie untersuchen | A.19.03

    Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009010" }

Seite:
Zur ersten Seite Eine Seite zurück 11 12 13 14 15 16 17 18 19 20 21 22 Eine Seite vor Zur letzten Seite