Ergebnis der Suche (47)

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: E-LEARNING)

Es wurden 1598 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 41 42 43 44 45 46 47 48 49 50 51 52 Eine Seite vor Zur letzten Seite

Treffer:
461 bis 470
  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 6 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008767" }

  • Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung | A.54.01

    Das „Konjugierte“ eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die „Normalform“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009723" }

  • Schaubild einer Exponentialfunktion erstellen | A.41.09

    Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009439" }

  • Partialbruchzerlegung, Beispiel 4 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008860" }

  • Symmetrie einer Funktion über Verschieben beweisen, Beispiel 4 | 17.04

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008932" }

  • Komplizierte Exponentialfunktionen ableiten | A.41.04

    Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009410" }

  • Aus dem Schaubild einer Exponentialfunktion die Funktionsgleichung erstellen | A.41.10.

    Normalerweise hat man die gesuchte Funktion in Abhängigkeit von einem (oder mehreren) Parameter gegeben. Man sucht ein paar Punkte, die man gut aus dem Schaubild ablesen kann und setzt die in die Funktion ein. Eventuell man das auch mit Asymptoten machen. Damit sollte man die Parameter erhalten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009443" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 2 | A.46.01

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009621" }

  • Uneigentliche Integrale berechnen, Beispiel 3 | A.18.05

    Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch „unendlich“. Zur Schreibweise: Normalweise darf man „unendlich“ nicht als Integralgrenze hinschreiben. Also schreibt man „u“ (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss „u“ gegen unendlich laufen und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008959" }

  • Komplexe Zahlen: kurze Einführung | A.54

    Eine imaginäre Zahl erhält man, wenn man die Wurzel aus einer negativen Zahl zieht (oder sich vorstellt, dass das ginge). Die Wurzel aus „-1“ wird mit „i“ bezeichnet (manche verwenden auch „j“ statt „i“). Zählt man zu imaginären Zahlen noch reelle Zahlen dazu, erhält man komplexe Zahlen. Beispielsweise ist „z=3+5i“ eine komplexe Zahl. Die „3“ ist der Realteil ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009722" }

Seite:
Zur ersten Seite Eine Seite zurück 41 42 43 44 45 46 47 48 49 50 51 52 Eine Seite vor Zur letzten Seite