Ergebnis der Suche (16)

Ergebnis der Suche nach: ( (Freitext: GLEICHUNG) und (Quelle: "Bildungsmediathek NRW") ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 209 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite

Treffer:
151 bis 160
  • Mittelsenkrechte berechnen, Beispiel 3 | A.02.14

    Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008414" }

  • Schnittpunkt Kreis-Kreis berechnen, Beispiel 1 | V.06.03

    Schnitt Kreis Kreis: Schneidet man zwei Kreise, erhält man keinen, einen oder zwei Schnittpunkte. [Gibt es genau einen Schnittpunkt ist praktisch jeder Kreis ein Berührkreis]. Rechnerisch geht man beim Schnitt von zwei Kreisen so vor, dass man in beiden Kreisgleichungen alle Klammern (mit binomischen Formeln?!) auflöst und danach beide Gleichungen voneinander abzieht. Man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010532" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 4 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009720" }

  • Gleichsetzungsverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 2 | G.02.03

    Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Gleichsetzungsverfahren“ (oder „Gleichsetzverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable aus. Nun löst man BEIDE Gleichungen nach dieser Variable auf und setzt die beiden ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010044" }

  • Umkugel einer Pyramide berechnen, Beispiel 1 | V.09.05

    Eine Umkugel einer Pyramide ist eine Kugel, die durch alle Eckpunkte der Pyramide geht. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn „M“) in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010656" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 2 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009709" }

  • Inkugel einer Pyramide berechnen | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010658" }

  • Gleichungssysteme mit drei Gleichungen und drei Unbekannten lösen, Beispiel 2 | G.02.08

    Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Eine Möglichkeit so ein LGS zu lösen, ist: man löst in irgendeiner Gleichung nach irgendeiner Variablen auf. Nun setzt man den Ergebnisterm dieser Variable in BEIDE anderen Gleichungen ein und erhält somit zwar nur noch zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010060" }

  • Quadratische Ergänzung zur Lösung quadratischer Gleichungen, Beispiel 1 | G.04.06

    Abgesehen von der a-b-c-Formel oder p-q-Formel kann man quadratische Gleichungen auch über „quadratische Ergänzung“ lösen. Die meisten Leute finden die quadratische Ergänzung eher „unschön“, jedoch handelt es sich immer um den gleichen Lösungsweg (auch wenn er etwas länger dauert). Mathematisch gesehen ist die quadratische Ergänzung der eigentliche Lösungsweg von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010091" }

  • Quadratische Ergänzung zur Lösung quadratischer Gleichungen, Beispiel 3 | G.04.06

    Abgesehen von der a-b-c-Formel oder p-q-Formel kann man quadratische Gleichungen auch über „quadratische Ergänzung“ lösen. Die meisten Leute finden die quadratische Ergänzung eher „unschön“, jedoch handelt es sich immer um den gleichen Lösungsweg (auch wenn er etwas länger dauert). Mathematisch gesehen ist die quadratische Ergänzung der eigentliche Lösungsweg von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010093" }

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite