Ergebnis der Suche (12)

Ergebnis der Suche nach: ( (Freitext: GLEICHUNG) und (Quelle: "Bildungsmediathek NRW") ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 210 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 6 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010100" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010094" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 2 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010096" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 1 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010095" }

  • Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010827" }

  • Schnittpunkt Ebene-Kugel berechnen | V.06.09

    Schnittkreis einer Ebene mit einer Kugel: Schneidet man eine Ebene mit einer Kugel, so erhält man als Schnittfläche einen Kreis. Leider gibt es im dreidimensionalen keine Gleichung für einen Kreis. Man muss also im Normalfall „nur“ den Mittelpunkt und den Radius des Schnittkreises berechnen. Den Schnittkreismittelpunkt erhält man, indem man eine Lotgerade auf E aufstellt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010555" }

  • Inkugel einer Pyramide berechnen, Beispiel 2 | V.09.06

    Eine Inkugel einer Pyramide ist eine Kugel, die alle Seitenflächen der Pyramide (von innen) berührt. Man stellt zuerst die Gerade auf, die von der Pyramidenspitze zum Mittelpunkt der Grundfläche geht. Diese Gerade schreibt man in Punktform um. Da der Kugelmittelpunkt (aus Symmetriegründen) auf dieser Gerade liegen muss, hat man bereits den Mittelpunkt (wir nennen ihn ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010660" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 2 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009718" }

  • Quadratische Ergänzung zur Lösung quadratischer Gleichungen, Beispiel 3 | G.04.06

    Abgesehen von der a-b-c-Formel oder p-q-Formel kann man quadratische Gleichungen auch über „quadratische Ergänzung“ lösen. Die meisten Leute finden die quadratische Ergänzung eher „unschön“, jedoch handelt es sich immer um den gleichen Lösungsweg (auch wenn er etwas länger dauert). Mathematisch gesehen ist die quadratische Ergänzung der eigentliche Lösungsweg von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010093" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 5 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009721" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite