Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: SYMMETRIE)

Es wurden 98 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 2 | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008921" }

  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 3 | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008922" }

  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008919" }

  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 1 | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008920" }

  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 1 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008916" }

  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 3 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008918" }

  • Symmetrie von ganzrationalen Funktionen bestimmen | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008915" }

  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 2 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008917" }

  • Symmetrie (Mathematik)

    Symmetrie eines Objektes liegt dann vor, wenn man das Objekt durch eine Kongruenzabbildung wieder auf sich selbst abbilden kann. Die geläufigsten Formen sind Achsensymmetrie und Punktsymmetrie.

    Details  
    { "Serlo": "DE:DBS:55996" }

  • Informationstext über Symmetrie


    Details  
    { "Mauswiesel.HE": "DE:Mauswiesel.HE:1232232" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite