Wurzelfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: WURZELFUNKTION)

Es wurden 60 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Wurzelfunktion ableiten, Beispiel 1 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009582" }

  • Wurzelfunktion integrieren bzw. aufleiten | A.45.03

    Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009589" }

  • Wurzelfunktion ableiten | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009581" }

  • Wurzelfunktion integrieren bzw. aufleiten, Beispiel 2 | A.45.03

    Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009591" }

  • Wurzelfunktion ableiten, Beispiel 3 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt man um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009584" }

  • Wurzelfunktion integrieren bzw. aufleiten, Beispiel 1 | A.45.03

    Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009590" }

  • Wurzelfunktion integrieren bzw. aufleiten, Beispiel 3 | A.45.03

    Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009592" }

  • Wurzelfunktion ableiten, Beispiel 2 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009583" }

  • Lernvideo: Ableitung einer verketteten Wurzelfunktion

    In diesem Lernvideo von www.prüfungskönig.de wird ausführlich erklärt, wie eine verkettete Wurzelfunktion mittels Potenzregel und Kettenregel abgeleitet werden kann.

    Details  
    { "Select.HE": "DE:Select.HE:1720574" }

  • Lernvideo: Ableitung der Wurzelfunktion mittels der Def. der 1. Abl.

    In diesem YouTube-Video von ARTMath100 wird die Ableitung der Wurzelfunktion über die Definition der 1. Ableitung als Differentialquotient hergeleitet. Dies ist zwar schwieriger als die Benutzung der Potenzregel, aber aus mathematischer Sicht wesentlich spannender. Am Schluß wird auch die Potenzregel benutzt, um den Schülern beide Wege plausibel zu ...

    Details  
    { "Select.HE": "DE:Select.HE:1721584" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite