Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: M��LLVERMEIDUNG) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 187 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Neurodegenerative Erkrankungen erarbeiten

    Rund 1,2 Millionen Menschen sind allein in Deutschland an Alzheimer erkrankt und rund 300.000 Patienten leben mit M. Parkinson. Die Erkrankungsrate von M. Huntington liegt hingegen deutlich niedriger bei ca. 8.000 Huntington-Patienten in Deutschland. Im ʺModul 1ʺ der als pdf verlinkten Zeitschrift ʺGenomexpress Scholaeʺ (2011) wird dargelegt, wie in der SEK II die ...

    Details  
    { "HE": [] }

  • Mächtigkeit (Mathematik)

    Die Mächtigkeit einer Menge M mit endlich vielen Elementen ist die Anzahl ihrer Elemente. Man schreibt für die Mächtigkeit einer Menge M.

    Details  
    { "DBS": "DE:DBS:55968" }

  • Virtuelle Experimente - Bewegung von Elektronen im E- und B-Feld

    Konzipiert ist die Lernumgebung insbesondere für Schülerinnen und Schüler der Oberstufe. Auf phänomenologischer Ebene und für einführende Betrachtungen können Teile der Seite aber auch problemlos in der Mittelstufe zum Einsatz kommen. Inhaltlich abgedeckt werden fünf schulrelevante Bereiche: - die Beschleunigung von geladenen Teilchen im Längsfeld (Elektronenkanone) - ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00016652" }

  • Bewegung von Elektronen im B-Feld eines Helmholtzspulenpaares

    Virtuelles Experiment zur Bewegung von Elektronen im Magnetfeld mit Bestimmung des Kreisbahnradiuses durch Kräfteansatz. Zusätzlich Möglichkeit zum selbstständigen Bestimmen der spezifischen Elektronenladung e/m.

    Details  
    { "DBS": "DE:DBS:56859" }

  • Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010272" }

  • Affine Abbildung; Eigenvektor | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010269" }

  • Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010271" }

  • Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010273" }

  • Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010270" }

  • Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010274" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite