Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Systematikpfad: MATHEMATIK)

Es wurden 4724 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Digitaler Mathe-Adventskalender

    Der Digitale Mathekalender ist wieder da! Ab sofort kann man sich registrieren.; Um die Aufgaben des Adventskalenders zu lösen, werden Knobelspaß und ein Mathewissen benötigt, das in etwa dem der Jahrgangsstufe 11 entspricht. Aber auch jüngere ambitionierte Schülerinnen und Schüler können mit ihrem Wissen und einem mathematischen Verständnis die Aufgaben erfolgreich ...

    Details  { "DBS": "DE:DBS:49698", "LEARNLINE": "DE:SODIS:LEARNLINE-00013324" }

  • Beidseitiger Hypothesentest über Normalverteilung berechnen, Beispiel 4 | W.20.07

    Bei einem beidseitigen Hypothesentest (bzw. Signifikanztest) tritt ein Ereignis ein, das eher selten passieren sollte (z.B. würfelt man mit einem Würfel 100 Mal und es erscheint nur fünf Mal eine Sechs). Nun ist die große Frage: War das nur Zufall oder stimmt etwas nicht? (z.B. könnte der Würfel getürkt sein und nicht jedes sechste Mal eine Sechs werfen). Um die Frage ...

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00010877" }

  • Fläche zwischen zwei Funktionen berechnen; eingeschlossene Fläche, Beispiel 3 | A.18.03

    Braucht man die Fläche zwischen zwei Funktionen, berechnet man das Integral von der Differenz beider Funktionen. (Man zieht die Funktionen also voneinander ab und leitet das Ergebnis auf). Die Integralgrenzen sind entweder die Schnittpunkte der Funktionen oder sie sind in der Aufgabenstellung gegeben. Zum Schluss setzt man beide Grenzen in die „Aufleitung“ ein und zieht die ...

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00008945" }

  • Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 4 | A.11.07

    Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00008654" }

  • Abstand Punkt-Kreis berechnen, Beispiel 1 | V.06.04

    Abstand Punkt Kreis: Man berechnet einfach eigentlich nur den Abstand vom Punkt zum Kreismittelpunkt. Nun vergleicht man das Ergebnis mit dem Kreisradius. Ist der Abstand kleiner als der Radius, muss der Punkt innerhalb eines Kreises liegen. Ist der Abstand größer als der Radius, liegt ein Punkt außerhalb vom Kreis. Den Abstand zum Kreis ist die Differenz vom Radius zum ...

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00010536" }

  • Extremstellen, Extrempunkte

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. An dieser Stelle erfahren Sie alles über Extremstellen und Extrempunkte.

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00004488" }

  • Zinsen: Wie kann man Zinsen berechnen? Was ist Zinsrechnung überhaupt? Beispiel 6 | G.01.02

    Verhältnisrechnungen bei Geld nennt man von „Zinsen“. Das „Kapital“ ist der Geldbetrag, den man anfangs bei der Bank anlegt und wird mit „K“ abgekürzt. Der „Zinssatz“ sind die Prozente, die man von der Bank kriegt, er wird mit „p“ bezeichnet. Die „Zinsen“ sind der Geldbetrag, den man von der Bank erhält, sie werden häufig mit „Z“ bezeichnet. Für die Zinsen, ...

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00010026" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 4 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00010126" }

  • Logistische Funktion

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Unter diesem Link werden Logistische Funktionen definiert und ihre Eigenschaften beschrieben.

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00004408" }

  • Gleichung dritten Grades; Nullstellen kubische Parabel berechnen | A.05.01

    Nullstellen einer kubischen Parabel (Gleichung dritten Grades) kann man eigentlich nur berechnen, in dem man „x“ (oder evtl. „x²) ausklammert und den Satz vom Nullprodukt (SvN) anwendet. Danach ist höchstwahrscheinlich p-q-Formel bzw. a-b-c-Formel angesagt.

    Details  { "LEARNLINE": "DE:SODIS:LEARNLINE-00008550" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite