Ergebnis der Suche (40)

Ergebnis der Suche nach: (Freitext: ABLEITUNG)

Es wurden 464 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 34 35 36 37 38 39 40 41 42 43 44 45 Eine Seite vor Zur letzten Seite

Treffer:
391 bis 400
  • Matheaufgaben aus der Arbeitswelt - Gleichungssysteme und Funktionen (Rumpf Katamaran)

    Die Arbeitsblätter sind für die Sekundarstufe I und II konzipiert. Zum Teil werden Grundlagen geübt, zum Teil müssen mehrere wichtige Formeln verknüpft werden – eine praxistypische Mischung verschiedener Berechnungen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00017660" }

  • Partialbruchzerlegung, Beispiel 2 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008858" }

  • Tangente bestimmen über Tangentensteigung, Beispiel 6 | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008870" }

  • Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 3 | A.22.03

    Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009092" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 5 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009721" }

  • Tangente bestimmen über Tangentensteigung | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008864" }

  • Definition von stetig und differenzierbar | A.25.0.3

    „Knickfrei“ ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009167" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 2 | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009713" }

  • Schaubilder von Funktionen | A.27

    Es gibt im Wesentlichen drei Typen von Fragen rund um Schaubilder von Funktionen in den vier Quadranten: 1.verschiedene Schaubilder und verschiedene Funktionsgleichungen sind gegeben und man muss jedes Schaubild den einzelnen Funktionen zuordnen. 2.nur ein Schaubild ist gegeben und man muss die Funktionsgleichung finden, die dazu passt. (Manchmal ist auch eine Funktion in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009198" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 2 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009709" }

Seite:
Zur ersten Seite Eine Seite zurück 34 35 36 37 38 39 40 41 42 43 44 45 Eine Seite vor Zur letzten Seite