Ergebnis der Suche (9)

Ergebnis der Suche nach: (Freitext: LAUFEN)

Es wurden 151 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Wurzelfunktion: Asymptote und Grenzwert berechnen | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009602" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 1 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009603" }

  • Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 3 | A.43.06

    Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009519" }

  • Prüfungen in der Pandemie

    Im Distanzunterricht brauchen Schulen neue Formate und neue Regeln für Prüfungen. Der Einsatz digitaler Medien bietet dabei viele neue Möglichkeiten, aber er wirft auch Fragen auf: Wie stellen Lehrkräfte zum Beispiel fest, dass Schülerinnen und Schüler die Leistungen selbst erbracht haben? Wie lassen sich die unterschiedlichen Lernbedingungen berücksichtigen? In diesem ...

    Details  
    { "DBS": "DE:DBS:62973" }

  • Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 4 | A.43.06

    Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009520" }

  • "Irgendwann laufen sie alle." Hochbegabung liegt im Trend.

    Hochbegabung liegt im Trend. Kommerzielle Anbieter werben in dieser Marktnische mit dem Versprechen, Hochbegabung bei Kindern aufzuspüren. Für viel Geld wird Kindern das Prädikat ´´hochbegabt´´ verliehen, das sich später nicht nur in Einzelfällen als falsch erweist. Die psychologische Diagnostik ist komplex und nicht in jedem Alter anzuwenden. Die Entscheidung, wie, ...

    Details  
    { "DBS": "DE:DBS:25204" }

  • Modellversuche - Was kommt danach?

    Im diesem Jahr (2008) laufen bundesweit Modellversuche für Innovationen in den beruflichen Schulen der Länder aus. Eine Fortführung ist nicht in Sicht. Es scheint vielen nicht klar zu sein, welche Folgen eine Einstellung von Modellversuchen hat. Im Folgenden soll aufgezeigt werden, worum es bei den Modellversuchen geht, welche Bedeutung Modellversuche haben und welches ...

    Details  
    { "DBS": "DE:DBS:41131" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 3 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009605" }

  • Uneigentliche Integrale berechnen, Beispiel 6 | A.18.05

    Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch „unendlich“. Zur Schreibweise: Normalweise darf man „unendlich“ nicht als Integralgrenze hinschreiben. Also schreibt man „u“ (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss „u“ gegen unendlich laufen und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008962" }

  • Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 2 | A.41.08

    Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009437" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite