Ergebnis der Suche (21)

Ergebnis der Suche nach: ( (Freitext: FLASH-VIDEO) und (Schlagwörter: "GLEICHUNG (MATHEMATIK)") ) und (Schlagwörter: "FORMEL (MATHEMATIK)")

Es wurden 210 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite

Treffer:
201 bis 210
  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 6 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009336" }

  • Beschränktes Wachstum berechnen, Beispiel 2 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009325" }

  • Beschränktes Wachstum berechnen, Beispiel 4 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009327" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 1 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009331" }

  • Logistisches Wachstum mit Differentialgleichung berechnen | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009340" }

  • Beschränktes Wachstum berechnen, Beispiel 1 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009324" }

  • Mathe-Grundlagen | Potenzregeln, Wurzeln, Ausklammern, binomische Formel verständlich erklärt

    Potenzregeln, Wurzeln, Ausklammern, binomische Formel, wer kann diese Basisumfomungen noch? Theoretisch hat es jeder mal gelernt, aber die wenigsten wissen es noch. Wir wiederholen hier (fast) jede Grundlagenrechnung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009785" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 2 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009318" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 5 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009321" }

  • Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 1 | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009341" }

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite