Ergebnis der Suche (101)

Ergebnis der Suche nach: ( (Freitext: FLASH-VIDEO) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 1011 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 91 92 93 94 95 96 97 98 99 100 101 102 Eine Seite vor Zur letzten Seite

Treffer:
1001 bis 1010
  • Kurvendiskussion Beispiel 3a: Ableitungen bestimmen | A.19.03

    Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009009" }

  • Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 1 | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009341" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 1

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009493" }

  • Stetigkeit und Differenzierbarkeit der verschiedenen Funktionstypen | A.25.01

    Je nachdem zu welchem Funktionstyp eine Funktion gehört, kann man schon Vermutungen über ihre Stetigkeit und Differenzierbarkeit anstellen. Polynome und Exponentialfunktionen sind im Normalfall immer stetig und differenzierbar. Hat eine Funktion einen Bruch, so gibt’s im Normalfall an der Stelle eine Definitionslücke (bzw. senkrechte Asymptote bzw. Polstelle bzw. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009159" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009487" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen | A.42.10.

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009492" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 2

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009494" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 1 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009486" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 3

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009495" }

  • Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 2 | A.43.10

    Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009535" }

Seite:
Zur ersten Seite Eine Seite zurück 91 92 93 94 95 96 97 98 99 100 101 102 Eine Seite vor Zur letzten Seite