Ergebnis der Suche (56)

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 878 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 50 51 52 53 54 55 56 57 58 59 60 61 Eine Seite vor Zur letzten Seite

Treffer:
551 bis 560
  • Geraden auslesen; Geradengleichung, Beispiel 4 | A.02.02

    Die Gleichung einer gezeichneten Gerade auszulesen ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Eine Geradengleichung hat die Form: y=m*x+b. Man muss erst den Schnittpunkt der Gerade mit der y-Achse ablesen, das ist „b“ (der y-Achsenabschnitt). Danach liest man die Steigung der Gerade ab indem man an irgendeinem beliebigen Punkt der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008350" }

  • Geraden auslesen; Geradengleichung, Beispiel 5 | A.02.02

    Die Gleichung einer gezeichneten Gerade auszulesen ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Eine Geradengleichung hat die Form: y=m*x+b. Man muss erst den Schnittpunkt der Gerade mit der y-Achse ablesen, das ist „b“ (der y-Achsenabschnitt). Danach liest man die Steigung der Gerade ab indem man an irgendeinem beliebigen Punkt der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008351" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 1 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008333" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 2 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009367" }

  • Quadratische Gleichungen mit x und einem weiteren Parameter, Beispiel 1 | G.04.07

    Den hässlichsten Fall bei quadratischen Gleichungen hat man, wenn zusätzlich zum „x“ noch ein weiterer Parameter drin steckt (z.B. noch ein „t“ oder so was). Meist heißt die zugehörige Fragestellung dann: „Für welche Werte von „t“ hat die Gleichung keine, eine oder zwei Lösungen?“. Dazu beginnt man mit der p-q-Formel oder mit der a-b-c-Formel und betrachtet dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010095" }

  • Geraden auslesen; Geradengleichung, Beispiel 3 | A.02.02

    Die Gleichung einer gezeichneten Gerade auszulesen ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Eine Geradengleichung hat die Form: y=m*x+b. Man muss erst den Schnittpunkt der Gerade mit der y-Achse ablesen, das ist „b“ (der y-Achsenabschnitt). Danach liest man die Steigung der Gerade ab indem man an irgendeinem beliebigen Punkt der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008349" }

  • Analysis 4 | die verschiedenen Funktionstypen, ihre Besonderheiten und wie man mit ihnen rechnet

    Wie der Kapitelname schon vermuten lässt, betrachten wir hier die verschiedenen Funktionstypen mit ihren Besonderheiten. Speziell gehen wir auf sechs Funktionstypen ein: 1.Exponentialfunktionen (e-Funktionen), 2.Trigonometrische Funktionen (sin oder cos), 3.Gebrochen-rationale Funktionen (Bruch-Funktionen), 4.Logarithmus-Funktionen, 5.Wurzelfunktionen, 6.Ganzrationale ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009387" }

  • Verkettete Funktionen berechnen, Beispiel 2 | A.52.03

    Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als „f nach g von x“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009688" }

  • Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010828" }

  • Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 1 | A.04.10

    Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008501" }

Seite:
Zur ersten Seite Eine Seite zurück 50 51 52 53 54 55 56 57 58 59 60 61 Eine Seite vor Zur letzten Seite