Ergebnis der Suche (150)

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: E-LEARNING)

Es wurden 1598 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 144 145 146 147 148 149 150 151 152 153 154 155 Eine Seite vor Zur letzten Seite

Treffer:
1491 bis 1500
  • Funktionsanpassung, Beispiel 1 | A.31.02

    Oft ist eine Funktion in Anhängigkeit von Parametern gegeben. Nun hat man die ein- oder andere Bedingung gegeben mit deren Hilfe man die Parameter bestimmen kann. Das Ganze nennt man Funktionsanpassung. Vermutlich kann man es auch „s4yx/nhyc“ nennen. Typisches Beispiel sind Brücken, die eine bestimmte Höhe und/oder Breite haben oder zwei Straßen die durch ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009348" }

  • Schaubild einer trigonometrischen Funktion erstellen, Beispiel 1 | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009489" }

  • Schaubilder von Funktionen: ganzrationale Funktion | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009200" }

  • Rechnen können mit GTR / CAS - Übungen / Abituraufgabe 3 | A.29.04

    Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009288" }

  • Kurvendiskussion von Kurvenscharen mit CAS | A.24.03

    Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009149" }

  • Analysis 3 | tiefere Einblicke in die Analysis

    Im Hauptkapitel „2 Analysis – Tiefere Einblicke“ behandeln wir Themen, die zwar nicht direkt zur Funktionsanalyse gehören, jedoch völlig regelmäßig als Fragen in Prüfungen und Klausuren mit auftauchen. (Diverse Extremwertaufgaben, zwei Funktionen, die sich berühren oder orthogonal aufeinander stehen, stetig oder differenzierbar sind und viel, viel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009031" }

  • Kurvendiskussion Beispiel 4b: Funktion auf Symmetrie untersuchen | A.19.04

    Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009019" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009487" }

  • Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 1 | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009341" }

  • Bestandsänderung berechnen, Beispiel 1 | A.31.01

    Bei ganz vielen Aufgaben geht es einen Bestand (z.B. eine Temperatur, eine Wassermenge im Behälter, ) und die Änderung von diesem Bestand (die Temperaturzu- oder -abnahme, die Zunahme vom Wasserbestand oder dessen Abnahme,...). Nun geht es darum, dass die Funktion, die die Änderung beschreibt, die Ableitung der Bestandsfunktion ist. Sie werden es nicht glauben: aus dieser ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009345" }

Seite:
Zur ersten Seite Eine Seite zurück 144 145 146 147 148 149 150 151 152 153 154 155 Eine Seite vor Zur letzten Seite