Ergebnis der Suche (12)

Ergebnis der Suche nach: ( ( ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: E-LEARNING) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 1232 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Kostenrechnung: kurze Einführung | A.33

    Die Kostenrechnung ist ein Bereich der Wirtschaftslehre. Es geht natürlich um die Produktionsmenge (das ist „x“), dazu gibt es eine Funktion für die Kosten, eine Funktion für die Einnahmen und eine für den Gewinn, wie überall in der Betriebswirtschaft.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009376" }

  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 2 | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008921" }

  • Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? | A.06.03

    Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008596" }

  • Tangente bestimmen über Tangentensteigung, Beispiel 6 | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008870" }

  • Ausklammern aus Gleichungen | A.12.03

    Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach „x“ auflöst.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008681" }

  • Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 2 | A.04.14

    Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig („a“ ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008520" }

  • Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 3 | A.12.09

    Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema „Nullstellen“ bzw. „Gleichungen lösen“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008750" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 1 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009366" }

  • Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 1 | A.44.04

    Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009551" }

  • Parabel verschieben, Beispiel 4 | A.04.08

    Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008494" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite