Ergebnis der Suche (7)

Ergebnis der Suche nach: ( (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK) ) und (Schlagwörter: E-LEARNING)

Es wurden 1589 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Geradengleichung aus P und m über Normalform bestimmen, Beispiel 2 | A.02.08

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für „m“ und die Koordinaten des Punktes für „x“ und „y“ in die Gleichung „y=m*x+b“ einsetzen um „b“ zu bestimmen. Nun setzt man die Werte für „m“ und „b“ wieder ein und hat die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008379" }

  • Polynomdivision, Beispiel 3 | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008736" }

  • Geradengleichung aus P und m über Normalform bestimmen, Beispiel 5 | A.02.08

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für „m“ und die Koordinaten des Punktes für „x“ und „y“ in die Gleichung „y=m*x+b“ einsetzen um „b“ zu bestimmen. Nun setzt man die Werte für „m“ und „b“ wieder ein und hat die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008382" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009430" }

  • Umkehrfunktion berechnen | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009230" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 3 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009557" }

  • Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 1 | A.41.08

    Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009436" }

  • Ausklammern aus Gleichungen, Beispiel 6 | A.12.03

    Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach „x“ auflöst.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008687" }

  • Kopfrechnen: schriftliche Subtraktion, Beispiel 3 | B.08.03

    Bei der schriftlichen Subtraktion (Minus Rechnung) schreibt man beide Zahlen so übereinander, dass das Komma genau übereinander steht (wenn es kein Komma gibt, denkt man sich das immer am Ende der Zahl). Dann fängt man ganz hinten an, zieht die untere Ziffer von der oberen ab. Ist die obere Zahl kleiner als die untere, denkt man sich 10 dazu und muss von den nächsten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009934" }

  • Tangente bestimmen über Tangentensteigung, Beispiel 6 | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008870" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite