Ergebnis der Suche (6)

Ergebnis der Suche nach: (Freitext: WERTE) und (Schlagwörter: ANALYSIS)

Es wurden 120 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 3 | A.06.01

    „Polynome“ heißen auch „ganzrationale Funktionen“ oder „Parabeln höherer Ordnung“. Während man unter „Parabel“ normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer „Parabel dritten Grades“ bzw. „Parabel dritter Ordnung“ eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit „Parabel vierter Ordnung“ ist eine Funktion gemeint, in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008587" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 2 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009367" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 1 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009366" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009602" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009604" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 1 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009603" }

  • Mehrdimensionale Funktion: kurze Erklärung | A.51

    Funktionen müssen natürlich nicht zwingend nur von einer Variablen abhängen (also nur von „x“). Eine Funktion kann auch mehrere „x-Werte“ haben, sie heißen dann auch „mehrdimensionale Funktionen“. Diese x-Werte heißen dann entweder x, y, z, .. oder „x1“, „x2“, „x3“, Meist interessiert man sich nun für Extrempunkte, Tangenten (die nun aber keine Gerade sind, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009651" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 3 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009605" }

  • Schaubild einer Exponentialfunktion erstellen, Beispiel 3 | A.41.09

    Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009442" }

  • Wertebereich einer Funktion bestimmen, Beispiel 2 | A.11.06

    Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008646" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite