Ergebnis der Suche (5)

Ergebnis der Suche nach: (Freitext: VERFAHREN) und (Quelle: "Bildungsmediathek NRW")

Es wurden 133 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Matrix lösen: keine Lösung, unlösbar, Widerspruch | M.02.06

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010157" }

  • Näherungsverfahren und Näherungslösungen | A.32

    Sie werden es vielleicht nicht glauben, aber Mathematik kann man für die Praxis anwenden. Und da reichen meist Näherungslösungen. Es gibt Näherungslösungen um Gleichungen zu lösen (Newton-Verfahren, Intervallhalbierung), es gibt Näherungsverfahren um Flächen/Integrale zu berechnen (Keplersche Fassregel, Simpson-Formel) und man kann komplizierte Funktionen durch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009355" }

  • LGS lösen: keine Lösung, unlösbar, Widerspruch | M.02.03

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010146" }

  • LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.03

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010147" }

  • Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.06

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010159" }

  • Determinante berechnen bei 4x4-Matrizen, Beispiel 2 | M.04.03

    Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010201" }

  • Determinante berechnen bei 4x4-Matrizen | M.04.03

    Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010199" }

  • Determinante berechnen bei 4x4-Matrizen, Beispiel 3 | M.04.03

    Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010202" }

  • Determinante berechnen bei 4x4-Matrizen, Beispiel 1 | M.04.03

    Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010200" }

  • Determinante berechnen bei 3x3-Matrizen | M.04.02

    Determinante bei 3x3-Matrizen: Man schreibt die erste und zweite Spalte der Matrix noch einmal hinter die Matrix. Nun sieht man drei Hauptdiagonalen (beginnen links oben, enden rechts unten) und drei Nebendiagonalen (beginnen links unten, enden rechts oben). Von jeweils einer Hauptdiagonalen multipliziert man die Einträge und addiert die Ergebnisse, danach multipliziert man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010195" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite