Ergebnis der Suche (39)

Ergebnis der Suche nach: (Freitext: GLEICHUNG) und (Quelle: "Bildungsmediathek NRW")

Es wurden 807 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 33 34 35 36 37 38 39 40 41 42 43 44 Eine Seite vor Zur letzten Seite

Treffer:
381 bis 390
  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 3 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008910" }

  • Schaubild einer Wurzelfunktion erstellen, Beispiel 2 | A.45.07

    Wurzel-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009608" }

  • Spurpunkte einer Geraden berechnen | V.01.09

    Spurpunkte von Geraden sind Schnittpunkte von Geraden mit Koordinatenebenen. Die x1-x2-Ebene hat die Gleichung x3=0, da setzt man die x3-Koordinate der Geraden Null und kriegt so den ersten Spurpunkt. Ebenso verfährt man mit der x1-x3-Ebene und der x2-x3-Ebene.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010391" }

  • Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 3 | A.04.07

    Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008489" }

  • Polarebene, Beispiel 3 | V.06.17

    Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010590" }

  • Horner-Schema, Beispiel 1 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008741" }

  • Näherungsverfahren und Näherungslösungen | A.32

    Sie werden es vielleicht nicht glauben, aber Mathematik kann man für die Praxis anwenden. Und da reichen meist Näherungslösungen. Es gibt Näherungslösungen um Gleichungen zu lösen (Newton-Verfahren, Intervallhalbierung), es gibt Näherungsverfahren um Flächen/Integrale zu berechnen (Keplersche Fassregel, Simpson-Formel) und man kann komplizierte Funktionen durch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009355" }

  • Wendetangente und Wendenormale bestimmen, Beispiel 4 | A.15.03

    Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008882" }

  • Ungleichungen höherer Potenz, Beispiel 3 | A.26.03

    Eine „höhere Ungleichung“ oder besser eine „Ungleichung höherer Potenz“ ist eine Ungleichung, in welcher höhere Potenzen von „x“ auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009190" }

  • Kreisgleichung, Beispiel 3 | V.06.01

    Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010526" }

Seite:
Zur ersten Seite Eine Seite zurück 33 34 35 36 37 38 39 40 41 42 43 44 Eine Seite vor Zur letzten Seite