Ergebnis der Suche (15)

Ergebnis der Suche nach: (Freitext: FLASH-VIDEO) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 1043 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 9 10 11 12 13 14 15 16 17 18 19 20 Eine Seite vor Zur letzten Seite

Treffer:
141 bis 150
  • Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 4 | A.14.06

    Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008853" }

  • Linearfaktorzerlegung über Nullstellen, Satz von Vieta; Beispiel 1 | B.05.02

    Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, und die Zahl vor der höchsten Potenz heißt „a“. Nun kann man die Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009885" }

  • Ableitung der Umkehrfunktion, Beispiel 3 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009261" }

  • Wurzel ableiten; Brüche ableiten, Beispiel 2 | A.13.02

    Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein „x“ steht, sondern nur Zahlen und unten weder „+“ noch „–“, kann man „x“ von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008770" }

  • Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 1 | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008624" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 2 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009556" }

  • Ableitung der Umkehrfunktion, Beispiel 2 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009260" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 4 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009558" }

  • Linearfaktorzerlegung über Nullstellen, Satz von Vieta; Beispiel 2 | B.05.02

    Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, und die Zahl vor der höchsten Potenz heißt „a“. Nun kann man die Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009886" }

  • Tangente bestimmen über Tangentensteigung, Beispiel 5 | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008869" }

Seite:
Zur ersten Seite Eine Seite zurück 9 10 11 12 13 14 15 16 17 18 19 20 Eine Seite vor Zur letzten Seite