Ergebnis der Suche (10)

Ergebnis der Suche nach: ( (Freitext: E-LEARNING) und (Schlagwörter: VIDEO) ) und (Schlagwörter: ABLEITUNG)

Es wurden 368 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Komplizierte trigonometrische Funktion ableiten | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009471" }

  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1 | A.05.06

    Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008570" }

  • Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren, Beispiel 5 | 14.05

    Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt „Produktintegration“ oder auch „partielle Integration“. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008847" }

  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1f: Schnittpunkt berechnen

    Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008576" }

  • Beispielaufgaben zu Ableitungen, Beispiel 5 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008801" }

  • Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren, Beispiel 2 | 14.05

    Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt „Produktintegration“ oder auch „partielle Integration“. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008844" }

  • Wurzelfunktion ableiten, Beispiel 3 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt man um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009584" }

  • Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab, Beispiel 1 | A.43.02

    Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009506" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 4 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008765" }

  • Mit L'Hospital Grenzwerte bestimmen | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009678" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite