Stammfunktion - Mathematik - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: ( ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Systematikpfad: INTEGRALRECHNUNG) ) und (Systematikpfad: STAMMFUNKTION)

Es wurden 12 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Flip the Classroom: Stammfunktionen und Hauptsatz

    In diesem Lernvideo von Flip the Classroom wird über einen schülergerechten Zugang erklärt, was die Stammfunktion ist und wie man sie findet.

    Details  
    { "HE": "DE:HE:2837782" }

  • Hauptsatz der Differential- und Integralrechnung

    Der Hauptsatz der Differential- und Integralrechnung (kurz HDI) oder Fundamentalsatz der Analysis führt die Berechnung bestimmter Integrale auf die Berechnung unbestimmter Integrale (also auf die Ermittlung von Stammfunktionen) zurück.

    Details  
    { "DBS": "DE:DBS:56198" }

  • Flächenberechnung mit Integralen

    Das Integral stellt einen orientierten Flächeninhalt dar, doch man kann damit auch Flächeninhalte allgemeinerer Flächen, die durch Einschluss verschiedener Funktionsgraphen gegeben sind, berechnen.

    Details  
    { "DBS": "DE:DBS:56087" }

  • Integration durch Substitution

    Steht in einem Integral die Verknüpfung von zwei Funktionen (evtl. sogar multipliziert mit der Ableitung der inneren Funktion), kann Substitution zur Vereinfachung beitragen.

    Details  
    { "DBS": "DE:DBS:56080" }

  • Partielle Integration (Mathematik)

    Die partielle Integration ist eine Methode zur Integration bestimmter Produkte zweier Funktionen. Man wendet sie oft an, wenn in einem Integral das Produkt zweier Funktionen steht, von denen die eine einfach zu integrieren und die andere leicht abzuleiten ist.

    Details  
    { "DBS": "DE:DBS:56086" }

  • Stammfunktion finden (Mathematik)

    Eine Stammfunktion F einer ursprünglichen, stetigen Funktion f ist eine differenzierbare Funktion, deren Ableitung wieder die ursprüngliche Funktion f ist. Umgekehrt ergibt das unbestimmte Integral über eine Funktion f alle Stammfunktionen F.

    Details  
    { "DBS": "DE:DBS:55959" }

  • Partialbruchzerlegung (Mathematik)

    Als Partialbruchzerlegung (PBZ) bezeichnet man die Darstellung einer rationalen Funktion als Summe von Brüchen, die im Nenner die Polstellen der Funktion haben.

    Details  
    { "DBS": "DE:DBS:56089" }

  • Bestimmtes und unbestimmtes Integral

    Der Hauptunterschied zwischen einem bestimmten und einem unbestimmen Integral ist das Vorhandensein (bestimmtes Integral) bzw. Fehlen (unbestimmtes Integral) der Integrationsgrenzen.

    Details  
    { "DBS": "DE:DBS:56088" }

  • Integral (Mathematik)

    Das Integral ist ein Oberbegriff für das bestimmte und unbestimmte Integral. Ein bestimmtes Integral liefert einen Zahlenwert, während ein unbestimmtes Integral eine Funktion liefert.

    Details  
    { "DBS": "DE:DBS:55971" }

  • Bestimmtes Integral berechnen

    Den Wert eines bestimmten Integrals über eine Funktion f berechnet man, indem man ihre Stammfunktion an den beiden Integrationsgrenzen auswertet und die Differenz der der beiden bildet ("obere Grenze minus untere Grenze").

    Details  
    { "DBS": "DE:DBS:56115" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite