Mathematik - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
- math.-naturwiss. Fächer
- Mathematik
Ergebnis der Suche nach: (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK)
Es wurden 4971 Einträge gefunden
- Treffer:
- 1 bis 10
-
Primfaktorzerlegung, Beispiel 1 | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009988" }
-
Kugel berechnen mit der Kugelgleichung, Beispiel 2 | V.06.07
Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei m1, m2 und m3 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010549" }
-
Normale außerhalb, Beispiel 2 | A.15.05
Eine Normale von außen oder Normale von außerhalb liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008894" }
-
Funktionen spiegeln an der x-Achse, an der y-Achse oder am Ursprung, Beispiel 1 | A.23.03
Will man eine Funktion spiegeln, so ist ein Minuszeichen entscheidend. Bei einer Achsenspiegelung an der y-Achse, muss man jede Variable x der Funktion durch -x ersetzt. Man spiegelt eine Funktion an der x-Achse, indem man vor die Funktion ein Minus setzt (aus f(x) wird -f(x)). Braucht man eine Punktspiegelung von einer Funktion am Ursprung, so erhält man das ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009112" }
-
Polynom bzw. ganzrationale Funktion ableiten | A.13.01
Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das x, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008761" }
-
Parabel mit Parameter berechnen, Beispiel 5 | A.04.19
Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum x noch ein t oder k oder ), so spricht man von einer Parabelschar (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man Scharparabel (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008547" }
-
Binomische Formeln und Binome ausrechnen | B.01.02
Ein Binom ist eine Klammer mit zwei Termen innen drin, z.B. (x+2). Für drei Sonderfälle gibt es die sogenannten binomischen Formeln. Sie lauten: 1. (a+b)²=a²+2ab+b², 2. (ab)²=a²2ab+b², 3. (a+b)(ab)=a²b². (Falls man die binomische Formeln vergisst, kann man beide Klammern auch einfach miteinander multiplizieren).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009791" }
-
Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet tan(alpha)=(m2-m1)/(1+m1*m2). Hierbei sind m1 und m2 die Steigungen der beiden Geraden. Man setzt m1 und m2 in die Formel ein und erhält den ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008424" }
-
Mit Termen rechnen, die keine gleiche Hochzahl und keine gleiche Basis haben, Beispiel 2 | B.03.05
Wenn irgendwelche Terme weder eine gleiche Hochzahl noch eine gleiche Basis haben, so kann man erst Mal nichts machen. Dennoch kann man manchmal tricksen, z.B. in dem man die Basis zerlegt, anders zusammenfasst oder sich sonst irgendwas einfallen lässt. (Dieses haben wir Zusammenfassen durch Basisangleich genannt, damit es sich professionell anhört). Manchmal kann man ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009862" }
-
Polynomdivision, Beispiel 3 | A.12.07
Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008736" }