Mathematik - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK)

Es wurden 4895 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 1 | A.44.09

    Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009577" }

  • Wurzeln multiplizieren: so berechnet man ein Wurzelprodukt, Beispiel 2 | B.04.01

    Wenn man Wurzeln miteinander multipliziert, so nennt man das „Wurzelprodukt“. Das ist sehr schön. Man schreibt eigentlich nur die Wurzeln um (als Hochzahl hat man dann eben Brüche) und wendet irgendwelche Potenzregeln an. Wenn es Wurzeln vom gleichen Typ sind (also z.B. man hat überall nur dritte Wurzeln), kann man auch alles unter EINE Wurzel schreiben und dann unter der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009867" }

  • Kopfrechnen: schriftliche Multiplikation, Beispiel 7 | B.08.04

    Bei der schriftlichen Multiplikation ignoriert man erst einmal jedes Komma (sofern vorhanden). Dann multipliziert man die erste Zahl mit jeder Ziffer der zweiten Zahl. Die Zwischenergebnisse werden übereinander geschrieben, jedoch um eine Stelle versetzt. Zum Schluss werden die Zwischenergebnisse zusammengezählt. Blöd zum Erklären, relativ einfach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009943" }

  • So leitet man vermischte Funktionen ab, Beispiel 6 | A.13.07

    In den bisherigen Kapiteln haben wir hauptsächlich Polynome („normale“ Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008809" }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion, Beispiel 6 | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009245" }

  • Cosinus und arccos und wie man richtig damit rechnet | T.01.05

    Der Kosinus ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Ankathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Ankathete (A) und Hypotenuse (H) nennt man Arkuscosinus (im Taschenrechner ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010294" }

  • Poission-Verteilung

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Wo und wie die Poisson-Verteilung angesetzt wird, erfahren Sie hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004583" }

  • Geradengleichung bestimmen über Punktsteigungsform PSF, Beispiel 2 | A.02.09

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Steigung und die Koordinaten des Punktes für „m“, „x0“ und „y0“ in die Punkt-Steigungs-Form (PSF) ein und löst nach „y“ auf. Wie lautet die Gleichung der PSF überhaupt? Es gibt mehrere Möglichkeiten für die PSF. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008387" }

  • Geradengleichung bestimmen über Punktsteigungsform PSF, Beispiel 5 | A.02.09

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Steigung und die Koordinaten des Punktes für „m“, „x0“ und „y0“ in die Punkt-Steigungs-Form (PSF) ein und löst nach „y“ auf. Wie lautet die Gleichung der PSF überhaupt? Es gibt mehrere Möglichkeiten für die PSF. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008390" }

  • Kreuzprodukt, Beispiel 7 | V.05.03

    Mit dem Kreuzprodukt (bzw. Vektorprodukt) kann man einige Rechnungen erheblich vereinfachen. Die Hauptanwendung ist wohl die, um eine Parameterform in eine Koordinatenform umzuwandeln (siehe auch V.05.01). Desweiteren verwendet man das Kreuzprodukt um Flächen von Dreiecken und Parallelogrammen leicht zu berechnen (unter Parallelogramm fällt auch: Rechteck, Raute, Quadrat) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010504" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite