Mathematik - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 2 | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 2 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Ableitung der Umkehrfunktion, Beispiel 6 | A.28.04
Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...
Tangente an Parabel, Beispiel 1 | A.04.13
Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt Tangente. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel ...
Kopfrechnen: schriftliche Division | B.08.06
Bei der schriftlichen Division muss man die erste Zahl (=Dividend) durch die zweiten Zahl (=Divisor) teilen. Ein Komma darf in der ersten Zahl durchaus auftauchen, in der zweiten Zahl darf jedoch kein Komma stehen. Falls hier doch ein Komma auftaucht, muss man eine Kommaverschiebung vornehmen. Hierbei wird in beiden Zahlen das Komma in die GLEICHE Richtung verschoben. Oft ...
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 6 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.06
Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...
Drehung von Vektoren mit GeoGebra
Durch Experimentieren wird der Zusammenhang zwischen den Koordinaten von Ur- und Bildvektor bei der Drehung um 90 und -90 Grad entdeckt (Klasse 7-8).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Arbeitsblatt (druckbar); Mindestalter: 10; Höchstalter: 14
Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04
Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...
Aus dem Schaubild einer Logarithmusfunktion die Funktionsgleichung erstellen | A.44.08
Im Normalfall muss man nur Funktionen der Form f(x)=a·ln(bx+c) zeichnen. Das Argument setzt man Null, wobei man für x den Wert der Definitionslücke einsetzt. Nun nimmt man ein paar Punkte, setzt sie in die Funktion ein und bestimmt die Parameter a, b und c.
Quelle
- Bildungsmediathek NRW (2931)
- Deutscher Bildungsserver (635)
- Lehrer-Online (611)
- Bildungsserver Hessen (455)
- Select Hessen (111)
- MELT (56)
- Elixier Community (37)
- Handwerk macht Schule (29)
- Bildungsserver Rheinland-Pfalz (15)
- Landesbildungsserver Berlin-Brandenburg (14)
- Niedersächsischer Bildungsserver (10)
Systematik
- Fächerübergreifende Themen (713)
- Grundschule (537)
- Physik (438)
- Berufliche Bildung (405)
- Fächer der Beruflichen Bildung (373)
- Überblick, Allgemeines (362)
- Biologie, Chemie, Physik (360)
Schlagwörter
- Video (1623)
- E-Learning (1588)
- Analysis (1320)
- Funktion (Mathematik) (1043)
- Mathematik (911)
- Koordinate (585)
- Formel (Mathematik) (582)
Bildungsebene
- Sekundarstufe I (4106)
- Sekundarstufe Ii (2220)
- Primarstufe (440)
- Berufliche Bildung (67)
- Hochschule (51)
- Spezieller Förderbedarf (30)
- Elementarbildung (20)
Lernressourcentyp
- Arbeitsblatt (540)
- Unterrichtsplanung (504)
- Arbeitsmaterial (330)
- Video/animation (221)
- Lernkontrolle (167)
- Interaktives Material (131)
- Kurs (32)