Mathematik - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK)

Es wurden 4987 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 2 | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u132

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008791" }

  • Würfel Wahrscheinlichkeit beim Würfelexperiment berechnen, Beispiel 1 | W.14.02

    Aufgaben mit einem Würfel sind sehr beliebt. Man kann mit mehreren Würfeln werfen, man kann die Augensumme betrachten, man kann Würfel mit sechs Seiten betrachten oder mit mehr oder weniger oder Logischerweise hat man bei jedem Wurf die gleiche Wahrscheinlichkeit für jede auftretende Zahl, das Würfelexperiment gehört also zu den Gleichverteilungen (zumindest, wenn der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010730" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 3 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009479" }

  • Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen | A.03.02

    Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008442" }

  • Integralfunktion bestimmen, Beispiel 5 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008988" }

  • Ausklammern von etwas was gar nicht im Term vorhanden ist, Beispiel 3 | B.01.04

    Selten muss man aus Termen sogar irgend etwas ausklammern, was da gar nicht existiert. Nicht schlimm. Das was man ausklammert schreibt man in den Nenner, unter den Term.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009804" }

  • Potenzgesetze und Potenzregeln: was ist das überhaupt? Wie rechnet man damit richtig? | B.03

    Bei Potenzproblemen in Mathe hilft leider auch kein Viagra. Sie müssen sich leider durch alle Potenzregeln und Potenzgesetze kämpfen. Davon hat´s zum Glück nur eine Hand voll, die wir in den Unterkapiteln betrachten. Vorab ein paar Begriffe: Betrachten wir eine Potenz der Form: „a^n“: Die untere Zahl „a“ heißt „Basis“, andere Begriffe sind eigentlich nicht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009841" }

  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 6 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009427" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 2 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009318" }

  • Komplizierte Exponentialfunktionen ableiten, Beispiel 2 | A.41.04

    Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009412" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite