Mathematik - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (10)

Ergebnis der Suche nach: (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK)

Es wurden 4898 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 1 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009422" }

  • Poisson-Verteilung Beispiel Wartezeit-Problem, Teil 4 | W.19.02

    Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010838" }

  • Einsatzverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 2 | G.02.02

    Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Einsetzverfahren“ (oder auch „Substitutionsverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable von einer beliebigen Gleichung aus, z.B. „y“ aus der ersten Gleichung. Nun setzt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010041" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009476" }

  • Prozentrechnung - Grundwert, Prozentwert, Prozentsatz (3). Lösung

    Lösung zum gleichnamigen Arbeitsblatt.

    Details  
    { "MELT": "DE:SODIS:MELT-04602326.10" }

  • Geometrie. Berechnung von Flächen - Parallelogramm und Raute. Lösung

    Lösung zum gleichnamigen Arbeitsblatt.

    Details  
    { "MELT": "DE:SODIS:MELT-04602327.4" }

  • Geometrie. Berechnung von Flächen - Der Kreisumfang. Lösung

    Lösung zum gleichnamigen Arbeitsblatt.

    Details  
    { "MELT": "DE:SODIS:MELT-04602327.12" }

  • Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 1 | A.41.08

    Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009436" }

  • Ableitung der Umkehrfunktion, Beispiel 5 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009263" }

  • Tangentialebene wenn Ebene Punkt berührt | V.06.15

    Im Fall „Ebene berührt Kugel“ hat man es mit Tangentialebenen zu tun. Eine Tangentialebene ist eine Ebene, die eine Kugel berührt. Der Verbindungsvektor vom Mittelpunkt zum Berührpunkt ist der Normalenvektor der Tangentialebene. Zusammen mit dem Berührpunkt als Stützvektor, kann man eine Gleichung der Tangentialebene aufstellen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010579" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite