Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: PUNKTSYMMETRIE)

Es wurden 67 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Lernvideo: Achsen- und Punktsymmetrie

    In diesem Lernvideo von echteinfach.tv wird sehr anschaulich die Punkt- und Achsensymmetrie erklärt. Die Gleichungen f(x)=f(-x) für die Achsensymmetrie und entsprechend f(x)=-f(-x) für die Punktsymmetrie werden ausführlich hergeleitet. Sie sind auch sehr wichtig für die Oberstufe.

    Details  
    { "Select.HE": "DE:Select.HE:1799395" }

  • Mathematik-digital/Achsen- und Punktsymmetrie von Funktionen

    Der Lernpfad soll einen Einblick in die Symmetrieeigenschaften von Funktionsgraphen vermitteln. Während man dem Graphen einer Funktion die Symmetrie meistens ansieht, soll geklärt werden, wie man die Symmetrie einer Funktion bereits am Funktionsterm erkennen kann.

    Details  
    { "ZUM": "DE:DBS:54987" }

  • Symmetrie von Funktionen und wie man damit rechnet | A.17

    Funktionen können zwei Typen von Symmetrie aufweisen: Punktsymmetrie oder Achsensymmetrie zu einer senkrechten Achse. (Eine Funktion kann zu waagerechten Geraden nicht symmetrisch sein!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008914" }

  • Figur an Achse spiegeln

    Um eine beliebige Figur F an einer Geraden g zu spiegeln, werden nacheinander alle charakteristischen Punkte (z.B. Eckpunkte, Mittelpunkte von Kreisen, etc.) an der Geraden gespiegelt und schließlich entsprechend der Gestalt von F verbunden.

    Details  
    { "Serlo": "DE:DBS:56121" }

  • Kurvendiskussion Beispiel 5c: Nullstellen berechnen | A.19.05

    Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009027" }

  • Kurvendiskussion Beispiel 5: Funktion mit Parameter | A.19.05

    Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009024" }

  • Kurvendiskussion Beispiel 4: Kurvenschar; Funktionsschar | A.19.04

    Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009017" }

  • Kurvendiskussion Beispiel 4d: Extrempunkte berechnen | A.19.04

    Ach, wie schön ist eine Funktionsanalyse mit einer Kurvenschar. Hier erfüllen wir uns diesen Wunsch. Wir führen eine Kurvendiskussion mit einer (relativ) einfachen Funktionsschar, also einer Funktion, die einen Parameter enthält.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009021" }

  • Kurvendiskussion Beispiel 2a: Ableitungen bestimmen | A.19.02

    In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008999" }

  • Kurvendiskussion Beispiel 5a: Ableitungen bestimmen | A.19.05

    Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009025" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite