Ganze Zahl - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Ergebnis der Suche nach: (Freitext: GANZE und ZAHL)

Es wurden 50 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Ordnung auf der Zahlengeraden

    Drei ganze Zahlen sind auf diesem Arbeitsblatt von realmath.de angegeben. Eine liegt auf der Zahlengeraden in der Mitte der anderen beiden. Leider fehlt eine Zahl. Die Aufgabe besteht darin, diese Zahl zu finden.

    Details  
    { "Select.HE": "DE:Select.HE:1657153" }

  • Betrag (Mathematik)

    Der Betrag einer Zahl ergibt sich als der Abstand der Zahl auf dem Zahlenstrahl von der Null. Man erhält ihn durch Weglassen des Vorzeichens. Falls eine Zahl positiv ist, ist der Betrag einfach diese Zahl. Falls die Zahl negativ ist, ist der Betrag das negative dieser Zahl.

    Details  
    { "DBS": "DE:DBS:55995" }

  • Runden (Mathematik)

    Beim Runden einer Zahl gibt man anstelle des genauen Werts der Zahl eine Zahl an, die in der Nähe der Zahl liegt, aber (im umgangssprachlichen Sinne) "rund" ist, also zum Beispiel eine Zehner-, Hunderter-, Tausenderzahl o.ä. ist oder weniger Stellen hinter dem Komma hat als die Zahl selbst.

    Details  
    { "DBS": "DE:DBS:56033" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 3 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009962" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009959" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 4 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009963" }

  • GRIPS Mathe - Ganze Zahlen - GRIPS Mathe Lektion 02

    Sinken die Temperatur unter null Grad, dann zeigt das Thermometer eine negative Zahl an. Basti Wohlrab und seine Schüler lernen auf der Wetterstation Hohenpeißenberg hautnah, dass Vorzeichen eine Zahl verändern. Das Team ordnet im Hof Dinge wie heißen Tee oder Eiswürfel auf einer großen Temperaturskala an und lernt dabei die Überschreitung des kritischen Nullpunkts. ...

    Details  
    { "Select.HE": "DE:Select.HE:1642632" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 5 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009964" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 2 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009961" }

  • Kopfrechnen: einen Bruch in einen Mischbruch umwandeln und umgekehrt, Beispiel 1 | B.08.08

    Ein reiner Bruch ist ein Bruch, der nur einen Zähler und einen Nenner hat. Ein Mischbruch hat einen Zähler, einen Nenner und eine ganze Zahl davor stehen. Z.B. sind fünf Achtel ein Reinbruch, während zwei Ganze fünf Achtel ein Mischbruch ist. Um einen reinen Bruch in einen Mischbruch umzuwandeln, teilt man einfach den Zähler (=oben) durch den Nenner (=unten) und erhält ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009960" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite