Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: FUNKTIONSBEGRIFF)

Es wurden 22 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Funktionsgraphen verschieben

    Die Verschiebung eines Funktionsgraphen in y-Richtung wird durch Addition oder Subtraktion einer Zahl a zum Funktionsterm realisiert. Eine Verschiebung in x-Richtung erreicht man durch das Ersetzen des Argumentsx durch x+a oder x-a.

    Details  
    { "Serlo": "DE:DBS:56104" }

  • Material zur Einführung linearer Funktionen (Präsentation und Arbeitsblätter)

    Lineare Funktionen 8.Klasse Gymnasium: Zuordnungen, lineare Zu- und Abnahme; Funktionsbegriff; Darstellungsformen linearer Funktionen Tabelle, Graph, Funktionsgleichung; problemorientierte Anwendungsaufgaben Handygebühren, Trampolinspringen, Flugzeugabsturz, Berkwerksflutung. Ich bin Lehramtsstudent und habe dies alles während eines Praktikums erstellt und bereits ...

    Details  
    { "DBS": "DE:DBS:42771" }

  • Schnittpunkte zweier Funktionen berechnen

    Schnittpunkte von Funktionen sind die Punkte, an denen beide Funktionen den gleichen y-Wert besitzen. Mit diesem Wissen kann man die Schnittpunkte berechnen.

    Details  
    { "DBS": "DE:DBS:56106" }

  • Funktionen

    Auf dieser Seite von mathe-online.at wird der Funktionsbegriff ausführlich erklärt.

    Details  
    { "HE": "DE:HE:2836989" }

  • Funktion (Mathematik)

    Eine Funktion ist eine Vorschrift, die jedem Element x aus einer Menge (der Definitionsmenge ) eindeutig ein Element y einer anderen Menge (der Wertemenge ) zuordnet.

    Details  
    { "Serlo": "DE:DBS:55965" }

  • Funktionsgraphen stauchen und strecken

    Prinziell streckt man den Graphen einer Funktion in y-Richtungum Faktor a, indem man den Funktionsterm mit a multipliziert.

    Details  
    { "Serlo": "DE:DBS:56103" }

  • Parameter und Koeffizient (Mathematik)

    Ein Parameter, meist als a, b oder k benannt, ist ähnlich einer Variablen nicht auf einen bestimmten Wert festgelegt. Trotzdem wird mit ihm wie mit einem festen Wert gerechnet. Ein Parameter steht fast immer in direkter Verbindung mit einer Variablen.

    Details  
    { "Serlo": "DE:DBS:55979" }

  • Definitionsbereich einer Funktion (Mathematik)

    Der Definitionsbereich (auch: Definitionsmenge) gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.

    Details  
    { "Serlo": "DE:DBS:55961" }

  • Umkehrfunktion (Mathematik)

    Die Umkehrfunktion einer Funktion f ist die Funktion, die jedem Funktionswert sein Argument zuordnet.

    Details  
    { "Serlo": "DE:DBS:56081" }

  • Definitionsbereich bestimmen (Mathematik)

    Den Definitionsbereich einer Funktion oder eines Terms bestimmt man, indem man untersucht, ob einzelne Teile des (Funktions)terms für bestimmte Zahlenbereiche nicht definiert sind. Zahlen aus diesen Bereichen muss man

    Details  
    { "Serlo": "DE:DBS:56093" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite