Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: DIFFERENZIALRECHNUNG) und (Schlagwörter: "SEKUNDARSTUFE II")

Es wurden 29 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Differentialrechnung mit Derive

    Anwendungsbezogene Unterrichtsreihe zum Einstieg in die Differenzialrechnung (Jahrgangsstufe 11).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (druckbar); Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:52485" }

  • Einführung in die Differenzialrechnung mit Derive

    Diese Unterrichtsreihe zum Thema Differenzialrechnung zeigt, wie mithilfe des Computer-Algebra-Systems (CAS) Derive Schülerinnen und Schüler die Begriffe und Sachverhalte der Differenzialrechnung erlernen und ein anwendungsbezogenes Verständnis entwickeln können. Die Reihe orientiert sich an dem Konzept des aktiven und selbstständigen Lernens. Das CAS leistet dabei einen ...

    Details  
    { "LO": "DE:LO:de.lehrer-online.321637" }

  • Einfache Extremwertprobleme mit Derive

    Unterrichtseinheit mit Derive 5.0. Musterlösungen stehen als Derive-Dokumente und Screenshots aus dem Programm zur Verfügung.; Lernressourcentyp: Unterrichtsplanung; Didaktisch-methodischer Hinweis; Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:52546" }

  • Grenzwert bestimmen

    Der Grenzwert einer Summe ist die Summe der Grenzwerte und der Grenzwert eines Produktes ist das Produkt der Grenzwerte.

    Details  
    { "Serlo": "DE:DBS:56100" }

  • Differenzierbarkeit (Mathematik)

    Differenzierbarkeit ist eine Eigenschaft von Funktionen, die darüber Auskunft gibt ob und wo sich eine Funktion ableiten lässt. Eine Funktion f heißt differenzierbar an einer Stelle x_0 ihres Definitionsbereichs, falls der Differentialquotient existiert.

    Details  
    { "Serlo": "DE:DBS:55999" }

  • Wendepunkt und Terrassenpunkt

    Ein Wendepunkt ist ein Punkt auf einem Funktionsgraphen, an dem sich die Krümmungsrichtung des Graphen ändert. Ist die Tangente durch diesen Punkt horizontal, so nennt man ihn einen Terrassen- oder Sattelpunkt.

    Details  
    { "Serlo": "DE:DBS:56000" }

  • Krümmung eines Funktionsgraphen

    Meist interessiert man sich für die Krümmung bestimmter Abschnitte des Graphen. Dazu betrachtet man die zweite Ableitung.

    Details  
    { "Serlo": "DE:DBS:55998" }

  • Ableitung der Umkehrfunktion (Mathematik)

    Die Ableitung einer Umkehrfunktion lässt sich mithilfe einer bestimmten Formel bestimmen.

    Details  
    { "Serlo": "DE:DBS:56076" }

  • Differenzenquotient

    Der Differenzenquotient zwischen zwei Stellen x_1 und x_2 beschreibt die Steigung der Sekanten zwischen den Punkten P und Q.

    Details  
    { "Serlo": "DE:DBS:56008" }

  • Differentialquotient

    Die Verknüpfung zwischen grafischer Anschauung mit einem Java-Applet und Rechnung führt zu einem sicheren Umgang mit dem Differenzialquotienten (Jahrgangsstufe 11).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:52605" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite