affine Transformation - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

affine Transformation - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Affine Abbildung | M.09
Eine affine Abbildung wird durch Matrizen beschrieben. Die Matrizen nehmen Vektoren (als eine Art x-Werte) und machen daraus neue Vektoren (eine Art y-Werte). Die Abbildungen können Drehungen sein, Verschiebungen, Streckungen, Spiegelungen, Scherungen und noch ein paar andere Möglichkeiten. Die ein- oder andere Idee ist noch wichtig, das machen wir hier ...
Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Schnittstelle Gesundheit und MINT Digitalisierung im Hörakustiker-Beruf
Dieser Fachartikel bietet Einblicke in die Digitalisierung eines Handwerksberufs am Beispiel der Hörakustik, die traditionelles Handwerk mit modernen Technologien verbindet. Indem Technologien wie 3D-Druck, KI-gesteuerte Hörsysteme und smarte Funktionen aktueller Hörgeräte thematisiert werden, zeigt der Text, wie Digitalisierung individualisierte Lösungen an der ...