Parabeln - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Schnittpunkte zweier Parabeln berechnen, Beispiel 1 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Schnittpunkte zweier Parabeln berechnen, Beispiel 3 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Schnittpunkte zweier Parabeln berechnen, Beispiel 2 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Schnittpunkte zweier Parabeln berechnen | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Analysis 1 | Geraden, Parabeln und wie man mit ihnen richtig rechnet
Wir beschäftigen uns an dieser Stelle mit den grundlegenden Themen rund ums Koordinatensystem: mit Punkte, Geraden und Parabeln. Wir bestimmen Abstände, Schnittpunkte, stellen Geraden- und Parabelgleichungen auf, zeichnen das ein- oder andere. Kurzum: Alles was man in Realschule und Mittelstufe zum Thema Analysis benötigt.
Parabel: so kann man Parabeln berechnen | A.04
Unter einer Parabel versteht man üblicherweise eine quadratische Parabel, eine Funktion der Form: y=Zahl*x²+Zahl*x+Zahl bzw. y=ax²+bx+c. Parabeln sind neben den Geraden die einfachsten Funktionen und daher recht wichtig. Viele Grundlagenrechnungen von Funktionen werden hier erstmalig angewendet. (Zeichnen von Funktionen, Berechnung von Nullstellen, Verschieben, ). Beginnt ...
Kubische Funktion, Wendepunkte kubischer Parabeln berechnen, Beispiel 2 | A.05.04
Den Wendepunkt einer Funktion erhält man, wenn man die zweite Ableitung Null setzt und nach x auflöst. Den y-Wert erhält man, in dem man x in die Ausgangsgleichung f(x) einsetzt. (Normalerweise muss man den x-Wert auch noch in die dritte Ableitung einsetzen, aber bei kubischen Parabeln [Gleichungen dritten Grades] muss man das streng genommen nicht. Wenn man ...
Quelle
- Bildungsmediathek NRW (342)
- Deutscher Bildungsserver (4)
- Lehrer-Online (3)
- Bildungsserver Hessen (3)
- Select Hessen (1)
Systematik
- Mathematik (349)
- Mathematisch-Naturwissenschaftliche Fächer (349)
- Quadratische Funktionen (5)
- Zuordnungen, Funktionen (5)
- Analysis, Analytische Geometrie (4)
- Fachdidaktik (3)
- Deutsch (3)
Schlagwörter
- E-Learning (336)
- Video (336)
- Koordinate (173)
- Gerade (Mathematik) (169)
- Analysis (161)
- Gleichung (Mathematik) (149)
- Parabel (Mathematik) (135)
Bildungsebene
Lernressourcentyp
- Unterrichtsplanung (3)
- Arbeitsblatt (2)
- Video/animation (1)
- Interaktives Material (1)
- Simulation (1)
- Arbeitsmaterial (1)
- Lernkontrolle (1)


