Exponent - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert | B.03.03
Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.
So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 3
Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.
So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 1
Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.
So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 2
Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.
Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? Beispiel 1 | B.03.02
Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.
Potenzgesetze und Potenzregeln: was ist das überhaupt? Wie rechnet man damit richtig? | B.03
Bei Potenzproblemen in Mathe hilft leider auch kein Viagra. Sie müssen sich leider durch alle Potenzregeln und Potenzgesetze kämpfen. Davon hat´s zum Glück nur eine Hand voll, die wir in den Unterkapiteln betrachten. Vorab ein paar Begriffe: Betrachten wir eine Potenz der Form: a^n: Die untere Zahl a heißt Basis, andere Begriffe sind eigentlich nicht ...
Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? Beispiel 2 | B.03.02
Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.
Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? Beispiel 3 | B.03.02
Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.
Kehrwert: was ist die Kehrwertregel? Was ist ein negativer Exponent? | B.03.02
Steht eine Potenz im Nenner (unten im Bruch), so kann man sie hoch schreiben (in den Zähler), in dem man das Vorzeichen der Hochzahl ändert. Man erhält einen negativen Exponenten. Die zugehörige Kehrwertregel lautet: 1/(a^x) = a^(-x). Allgemein: man ändert das Vorzeichen der Hochzahl, indem man den Kehrwert bildet.
Quelle
Systematik
- Mathematik (64)
- Mathematisch-Naturwissenschaftliche Fächer (64)
- Fachdidaktik (1)
- Zahlen (1)
- Fächerübergreifende Themen (1)
- Grundschule (1)
Schlagwörter
- E-Learning (61)
- Video (61)
- Exponent (56)
- Rechnen (54)
- Hochzahl (48)
- Formel (Mathematik) (48)
- Grundrechenart (47)