Ergebnis der Suche (8)

Ergebnis der Suche nach: (Freitext: VOLUMEN)

Es wurden 123 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Air

    Schülerinnen und Schüler lernen die Bestandteile von Luft kennen und machen sich damit vertraut, dass Luft ein Gasgemisch ist, das Volumen und Gewicht hat.Geeignet für eine 6. Klasse der Realschule (LMZ Baden-Württemberg 2013).

    Details  
    { "HE": "DE:HE:1591417" }

  • DynaGeo: Zylinder mit minimaler Oberfläche

    Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00002989" }

  • Zylinder (Mathematik)

    Ein Zylinder ist eine dreidimensionaler Körper mit einem Kreis als Grundfläche, parallelen Begrenzungslinien und einem gleich großen Kreis als Deckfläche.

    Details  
    { "DBS": "DE:DBS:55951" }

  • Kugel (Mathematik)

    Eine Kugel ist im dreidimensionalen Raum das, was im zweidimensionalen Raum ein Kreis ist, nämlich die Menge aller Punkte, die zu einem Mittelpunkt M alle den gleichen Abstand r haben.

    Details  
    { "DBS": "DE:DBS:55955" }

  • Anwendungsgebiete der Integralrechnung

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Auf den vorliegenden Seiten wird anschaulich gezeigt, in welchen Gebieten man Integralrechnung einsetzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004506" }

  • Pyramide (Mathematik)

    Eine Pyramide ist ein Körper, der durch Verbinden aller Ecken eines beliebigen Vielecks mit einem Punkt außerhalb der Ebene, in der das Vieleck liegt, entsteht.

    Details  
    { "DBS": "DE:DBS:55988" }

  • Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 2 | V.07.01

    Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010594" }

  • Dreiseitige Pyramide aus Ebene mit Koordinatenebenen | V.07.01

    Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010592" }

  • Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 1 | V.07.01

    Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010593" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 3 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009054" }

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite