Ergebnis der Suche (2)

Ergebnis der Suche nach: (Freitext: TASCHENRECHNER)

Es wurden 121 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Zeiten umrechnen mit dem Taschenrechner | B.07.03

    Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009916" }

  • Zeiten umrechnen mit dem Taschenrechner, Beispiel 1 | B.07.03

    Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009917" }

  • Zeiten umrechnen mit dem Taschenrechner, Beispiel 5 | B.07.03

    Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009921" }

  • App: Photomath

    Photomath liest und löst mathematische Probleme sofort, indem es die Kamera deines mobilen Endgeräts verwendet. Du kannst deine handgeschriebenen oder gedruckten Aufgaben so überprüfen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00015019" }

  • Krümmungsradius und Bogenlänge einer Kurve bestimmen | A.11.08

    Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man „hässlich“ auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008655" }

  • Rechnen können mit GTR / CAS - Übungen / Abituraufgabe 3 | A.29.04

    Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009288" }

  • Krümmungsradius und Bogenlänge einer Kurve bestimmen, Beispiel 2 | A.11.08

    Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man „hässlich“ auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008657" }

  • So zeichnet man eine trigonometrische Funktion, Beispiel 1 | T.01.08

    Normalweise berechnet man Winkel in Grad. Wenn man allerdings nicht Winkel braucht, sondern Winkelfunktionen [y=sin(x), y=cos(x),..] dann ist die Messung in Grad ziemlich ungeschickt (die Gründe sind erst mal egal), in diesem Fall misst man Winkel in Bogenmaß (=Radianten).Kurz gesagt: will man die Größe eines Winkels wissen, stellt man den Taschenrechner auf Gradmaß ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010309" }

  • Rechnen können mit GTR / CAS - Abituraufgabe 1e | A.29.2

    Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man muss den ein- oder anderen Schnittpunkt berechnen, man braucht Flächenberechnung, Rotation einer Fläche um die x-Achse und natürlich will niemand auf eine Extremwertaufgabe verzichten. Der Sinn ist alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009279" }

  • Abstand Punkt Gerade berechnen mit GTR oder CAS, Beispiel 1 | V.03.04

    Den Abstand Punkt Gerade kann man auf mehrere Arten berechnen. Für eine der Möglichkeiten verwendet man grafischen Taschenrechner (also GTR oder CAS). Man schreibt die Gerade in Punktform um (stellt also einen laufenden Punkt auf) und bestimmt den Abstand von diesem laufenden Punkt zum Ausgangspunkt (in Abhängigkeit vom Parameter). Diesen Abstand gibt man als Funktion in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010434" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite