Wachstumsfaktor - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (2)

Ergebnis der Suche nach: (Freitext: WACHSTUMSFAKTOR)

Es wurden 40 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Rentenrechnung: so rechnet man richtig, Beispiel 2 | A.55.02

    Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital „K“ nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). „R“ ist die regelmäßige Rate die einbezahlt wird, „q“ ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009774" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 4 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009320" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009316" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 1 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009317" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 2 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009318" }

  • Rentenrechnung: so rechnet man richtig, Beispiel 1 | A.55.02

    Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital „K“ nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). „R“ ist die regelmäßige Rate die einbezahlt wird, „q“ ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009773" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 5 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009321" }

  • Rentenrechnung: so rechnet man richtig | A.55.02

    Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital „K“ nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). „R“ ist die regelmäßige Rate die einbezahlt wird, „q“ ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009772" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 3 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009319" }

  • Prozent- und Zinsrechnung: Zinseszinsen berechnen

    Dieses Arbeitsmaterial zum Thema Wachstumsfaktor und Zinsfaktor stellt eine Möglichkeit vor, an die schon bekannte Zinsrechnung die Berechnung der Zinsen für eine mehrjährige Geldanlage anzuschließen. Im Mittelpunkt stehen dabei der Zinsfaktor und das Handling der Zinseszinstabelle.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_001761" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite