Parabel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (12)

Ergebnis der Suche nach: (Freitext: PARABEL)

Es wurden 222 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 1 | A.04.14

    Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig („a“ ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008519" }

  • Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 4 | A.04.10

    Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008504" }

  • Schaubild einer ganzrationalen Funktion erstellen, Beispiel 3 | A.46.06

    Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009645" }

  • Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 3 | A.04.14

    Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig („a“ ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008521" }

  • Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 4 | A.04.14

    Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig („a“ ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008522" }

  • Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 1 | A.04.10

    Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008501" }

  • Schaubild einer ganzrationalen Funktion erstellen, Beispiel 2 | A.46.06

    Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009644" }

  • Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 2 | A.04.10

    Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008502" }

  • Schaubild einer ganzrationalen Funktion erstellen | A.46.06

    Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009642" }

  • Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 2 | A.04.14

    Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig („a“ ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008520" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite