Cosinus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (3)

Ergebnis der Suche nach: (Freitext: COSINUS)

Es wurden 25 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 25
  • Einheitskreis: was ist das und wofür man ihn braucht | T.01.03

    Der Einheitskreis hat den Mittelpunkt im Ursprung der Koordinatensystems und hat einen Radius von „1“. Man kann am Einheitskreis ganz viele Theorie zu Sinus, Kosinus, Tangens herleiten und veranschaulichen. Sie werden den Einheitskreis nicht unbedingt brauchen, man kann alles auch anders herleiten oder sich merken. Manche Leute finden die Veranschaulichung am Einheitskreis ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010288" }

  • Ableitungsrechner mit Rechenweg und Erklärung

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Dieser Online-Rechner für Ableitungen zeigtLehrern und Schülern auch den Rechenweg an.

    Details  
    { "DBS": "DE:DBS:49772", "LEARNLINE": "DE:SODIS:LEARNLINE-00004411" }

  • Digitaler Skizzenblock Sketchometry

    Sketchometry ist das ideale Werkzeug für den Mathematikunterricht in der Schule und für die Vorbereitung zu Hause. Auf Tablet-Computern, die direkt über Fingerbewegungen auf einem Touchscreen gesteuert werden, können Schülerinnen und Schüler in kürzester Zeit präzise geometrische Konstruktionen entwickeln und auf virtuellen Speicherplätzen im Internet abspeichern. Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00001067" }

  • Stetigkeit und Differenzierbarkeit der verschiedenen Funktionstypen | A.25.01

    Je nachdem zu welchem Funktionstyp eine Funktion gehört, kann man schon Vermutungen über ihre Stetigkeit und Differenzierbarkeit anstellen. Polynome und Exponentialfunktionen sind im Normalfall immer stetig und differenzierbar. Hat eine Funktion einen Bruch, so gibt’s im Normalfall an der Stelle eine Definitionslücke (bzw. senkrechte Asymptote bzw. Polstelle bzw. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009159" }

  • Anwendung der Winkelfunktionen

    In dieser Unterrichtseinheit soll anhand einer komplexen Beispielaufgabe, verpackt in einer kleinen Geschichte, das Verständnis für Auswahl und Verwendung der Winkelfunktionen entwickelt werden. In gewerblich-technischen Ausbildungsberufen, in denen CNC gelehrt wird (Metall, Holz), gehören diese zu den theoretischen Grundlagen genauso wie das Erfassen von technischen ...

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1001853" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite