Ergebnis der Suche (12)

Ergebnis der Suche nach: (Freitext: AUSKLAMMERN)

Es wurden 136 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Linearfaktorzerlegung, Beispiel 3 | A.46.03

    Linearfaktoren sind Klammern, die mit „mal“ verbunden sind. In den Klammern darf „x“ keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009630" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 4 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010126" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 1 | A.46.02

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009624" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 3 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010125" }

  • Kubische Gleichung lösen; Cardanische Formel, Beispiel 3 | G.05.02

    Eine „kubische Gleichung“ ist eine Gleichung dritten Grades. Eigentlich gibt es nur eine sinnvolle Möglichkeit, so eine Gleichung zu lösen: Man muss „x“ ausklammern können und danach den Satz vom Nullprodukt anwenden können. Zusätzlich gibt es andere Möglichkeiten, z.B. die Polynomdivision, die aber nur für manche Schularten der Oberstufe wichtig sind und für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010109" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010186" }

  • Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 1

    Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als „hebbare Lücke“ (ein „Loch“ in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009672" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 2 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010188" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 1 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010187" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 3 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010189" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite