Ergebnis der Suche

Ergebnis der Suche nach: ( ( ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: MATHEMATIK) ) und (Quelle: "Bildungsmediathek NRW") ) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 77 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Verkettete Funktionen berechnen, Beispiel 1 | A.52.03

    Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als „f nach g von x“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009687" }

  • Verkettete Funktionen berechnen, Beispiel 3 | A.52.03

    Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als „f nach g von x“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009689" }

  • Verkettete Funktionen berechnen | A.52.03

    Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als „f nach g von x“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009686" }

  • Differentialgleichung: Was ist eine DGL und wie rechnet man damit? | A.53

    Eine Differenzialgleichung (andere Schreibweise: Differentialgleichung) (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber. Der Schwierigkeitsgrad beginnt „relativ einfach“ (?Kap.4.3.1). Dann geht’s recht schnell mit dem Niveau aufwärts. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009697" }

  • Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen | A.52.04

    Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009690" }

  • Mit L'Hospital Grenzwerte bestimmen | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009678" }

  • Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 6

    Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009696" }

  • Partielle Ableitung, Beispiel 5 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009657" }

  • Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

    Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009663" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 2 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009704" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite