Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: "FORMEL (MATHEMATIK)") ) und (Schlagwörter: KOORDINATE)

Es wurden 170 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Schnittpunkte zweier Parabeln berechnen, Beispiel 1 | A.04.12

    Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008511" }

  • Schnittpunkte zweier Parabeln berechnen | A.04.12

    Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008510" }

  • Schnittpunkte zweier Parabeln berechnen, Beispiel 2 | A.04.12

    Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008512" }

  • Schnittpunkte zweier Parabeln berechnen, Beispiel 3 | A.04.12

    Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008513" }

  • Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 3 | A.03.04

    Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1|y1), (x2|y2) und (x3|y3) die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008453" }

  • Normalform einer Parabel aus Scheitelform bestimmen | A.04.05

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man den Scheitelpunkt gegeben, so setzt man seine Koordinaten für xs und ys ein [x und y bleiben x und y], löst die Klammer auf [binomische Formel oder ausmultiplizieren] und erhält die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008478" }

  • Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 2 | A.04.04

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008475" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 5 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008471" }

  • Parabel verschieben, Beispiel 2 | A.04.08

    Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008492" }

  • Normalform einer Parabel aus Scheitelform bestimmen, Beispiel 2 | A.04.05

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man den Scheitelpunkt gegeben, so setzt man seine Koordinaten für xs und ys ein [x und y bleiben x und y], löst die Klammer auf [binomische Formel oder ausmultiplizieren] und erhält die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008480" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite