Ergebnis der Suche

Ergebnis der Suche nach: (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK)

Es wurden 4883 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Einseitiges Konfidenzintervall über Tabelle berechnen, Beispiel 1 | W.20.10

    Bei einem einseitigen Konfidenzintervall hat man die W.S. von einem Intervall gegeben und sucht eine Grenze derart, dass der gesamte Bereich der Verteilung links von der Grenze oder der gesamte Bereich rechts von der Grenze genau der gegebenen W.S. entspricht. Bemerkung: Das Konfidenzintervall enthält immer den Erwartungswert und umfasst meist mehr als 80%, 90% der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010892" }

  • Zahlenmauern-Übungsheft

    Das vorliegende Übungsheft zum Aufgabenformat „Zahlenmauern" ist eine vorstrukturierte Lernumgebung. In dieser sollen zielgerichtet bestimmte inhaltsbezogene (schnelles Kopfrechnen/Zahlenrechnen) und prozessbezogene Kompetenzen (Auffälligkeiten fokussieren, beschreiben und in Ansätzen begründen) trainiert werden

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00000633" }

  • Die Exponentialfunktion und die "Unendlichkeitsmaschine"

    Die Lernenden erkennen den Zusammenhang zwischen der Unendlichkeitsmaschine von Leonardo da Vinci (1452-1519) und der Exponentialfunktion (Klasse 10).; Lernressourcentyp: Lernmaterial; Animation; Grafik (interaktiv); Arbeitsblatt (interaktiv); Mindestalter: 10; Höchstalter: 14

    Details  
    { "DBS": "DE:DBS:53773" }

  • Kurvendiskussion von Kurvenscharen, Beispiel 5 | A.24.02

    Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009145" }

  • Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 2 | A.02.21

    Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008433" }

  • p-q-Formel, Mitternachtsformel, Beispiel 9 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008716" }

  • Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 2 | A.44.01

    Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009540" }

  • Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 5 | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010184" }

  • Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 4 | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010183" }

  • Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient, Beispiel 2 | W.16.01

    Die Formel für die Binomialverteilung heißt auch „Bernoulli-Formel“ und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010785" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite