Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: VEKTOR) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 74 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Einführung in die Vektoralgebra

    Hier finden Sie eine kurze Einführung in die Vektoralgebra. Grundlagen (wie z.B. Unterschied Skalar - Vektor, Ortsvektor, Länge eines Vektors, Vektoren in der Ebene und im Raum) werden hier in einfachen Schritten erklärt.

    Details  
    { "DBS": "DE:DBS:37851" }

  • Linearkombination

    Eine Linearkombination von Vektoren ist eine Summe von Vektoren (Vektoraddition) , wobei jeder Vektor noch mit einer (reellen) Zahl (Linearfaktor) multipliziert wird. Das Ergebnis davon ist wieder ein Vektor.

    Details  
    { "DBS": "DE:DBS:56167" }

  • COVID-19-Impfung mit Vektor-Impfstoff

    Faktenblätter zum Impfen des RKI unter CC BY-ND 4.0 - Lizenzierung

    Details  
    { "LBS-BW": [] }

  • Flip the Classroom: Vektoren

    In diesem Video von Flip the Classroom wird der Vektorbegriff, seine geometrischen Interpretationen und Rechenoperationen wie die Vektoraddition, die Vektorsubtraktion und die skalare Multiplikation sehr anschaulich und mit typischen Aufgaben erklärt.

    Details  
    { "HE": [] }

  • Serlo: Der Vektorbegriff

    Auf dieser Seite von serlo.org wird sehr anschaulich in den Vektorbegriff eingeführt. U. a. werden die Länge eines Vektors und die Orthogonalität gut erklärt.

    Details  
    { "HE": [] }

  • Flip the Cassroom: Skalarprodukt, orthogonale Vektoren

    In diesem Lernvideo von Flip the Classroom wird die Berechnung des Skalarproduktes vorgestellt und die Orthogonalitätsbedingung für Vektoren thematisiert. Anschließend werden typische Aufgaben berechnet.

    Details  
    { "HE": [] }

  • Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010271" }

  • Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010274" }

  • Fixvektor, stationäre Verteilung | M.07.03

    Im Normalfall gibt es zu jeder Populationsmatrix eine Verteilung zwischen den verschiedenen Stationen, die die Eigenschaft hat, sich im Laufe der Zeit nicht zu ändern. Diese Verteilung heißt „Fixvektor“ oder „Fixpunkt“ oder „stationäre Verteilung“. Zum Berechnen setzt man immer gleich an: (Populationsmatrix) mal (unbekannter Vektor) gleich (nochmal unbekannter ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010246" }

  • Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010273" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 Eine Seite vor Zur letzten Seite