Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: EXPONENTIALGLEICHUNGEN) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 21 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 1 | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009397" }

  • Nullstellen von komplizierten Exponentialfunktionen berechnen | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009396" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 3 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009392" }

  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 4 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009425" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 6 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009395" }

  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 5 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009426" }

  • Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 6 | A.41.02

    Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009402" }

  • Exponentialfunktion: Nullstellen berechnen | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009389" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 2 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009391" }

  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 2 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009423" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite