Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: EULERSCHE und ZAHL) und (Schlagwörter: E-LEARNING) ) und (Schlagwörter: ANALYSIS)

Es wurden 41 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Exponentialfunktion: Ableitung, Beispiel 6 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009409" }

  • Exponentialfunktion: Ableitung, Beispiel 5 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009408" }

  • Exponentialfunktion: Ableitung, Beispiel 4 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009407" }

  • Exponentialfunktion: Ableitung | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009403" }

  • Exponentialfunktion: Ableitung, Beispiel 3 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009406" }

  • Exponentialfunktion: Ableitung, Beispiel 1 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009404" }

  • Exponentialfunktion: Ableitung, Beispiel 2 | A.41.03

    Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art „innere Ableitung“ ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009405" }

  • Exponentialfunktion: kurze Einführung in die e-Funktion | A.41

    Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die mit Abstand wichtigste Exponentialfunktion ist die e-Funktion, welche die Eulersche Zahl (also e=2,718...) als Basis hat.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009388" }

  • Exponentialfunktion: Nullstellen berechnen | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009389" }

  • Exponentialfunktion: Nullstellen berechnen, Beispiel 3 | A.41.01

    Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den „ln“ an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an „x“ ran.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009392" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite