Ergebnis der Suche (39)

Ergebnis der Suche nach: (Freitext: ABLEITUNG)

Es wurden 464 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 33 34 35 36 37 38 39 40 41 42 43 44 Eine Seite vor Zur letzten Seite

Treffer:
381 bis 390
  • Partialbruchzerlegung, Beispiel 3 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008859" }

  • Mit L'Hospital Grenzwerte bestimmen, Beispiel 2 | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009680" }

  • Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden, Beispiel 3 | A.14.01

    Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008817" }

  • Tangente an Graph

    Eine Tangente an einen Graphen ist eine Gerade, die den Graphen einer Funktion f an einer bestimmten Stelle berührt, d. h. die Steigung der Tangente und der Funktion stimmen am Berührpunkt überein.

    Details  
    { "DBS": "DE:DBS:56279" }

  • Normale außerhalb | A.15.05

    Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008892" }

  • Tangente bestimmen über Tangentensteigung, Beispiel 5 | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008869" }

  • Partialbruchzerlegung | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008856" }

  • Tangente außerhalb, Beispiel 2 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008887" }

  • Partialbruchzerlegung, Beispiel 1 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008857" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 3 | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009714" }

Seite:
Zur ersten Seite Eine Seite zurück 33 34 35 36 37 38 39 40 41 42 43 44 Eine Seite vor Zur letzten Seite