Punktsymmetrie - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (5)

Ergebnis der Suche nach: (Freitext: PUNKTSYMMETRIE)

Es wurden 66 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Symmetrie einer Funktion mit Formel berechnen, Beispiel 4 | A.17.03

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008927" }

  • Kurvendiskussion Beispiel 2: dreifache Nullstelle; Sattelpunkt; Wendetangente; Fläche | A.19.02

    In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008998" }

  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 3 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008918" }

  • Kurvendiskussion Beispiel 1b: Funktion auf Symmetrie untersuchen | A.19.01

    Wir führen eine Funktionsanalyse einer Funktion durch, die Symmetrie zur y-Achse aufweist und zwei Berührpunkte mit der x-Achse aufweist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008993" }

  • Kurvendiskussion Beispiel 2c: Nullstellen berechnen | A.19.02

    In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009001" }

  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 1 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008916" }

  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 2 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008917" }

  • Kurvendiskussion Beispiel 3f: Funktion zeichnen | A.19.03

    Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009014" }

  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 2 | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008921" }

  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 3 | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008922" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite