Gleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (80)

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 878 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 74 75 76 77 78 79 80 81 82 83 84 85 Eine Seite vor Zur letzten Seite

Treffer:
791 bis 800
  • Geraden mit Parameter, Beispiel 1 | A.02.17

    Wenn in einer Geradengleichung ein Parameter auftaucht (also zusätzlich zum „x“ noch ein „t“ oder „k“ oder ), so spricht man von einer „Geradenschar“ (man hat schließlich eine ganze Schar von Geraden). Jede einzelne Gerade nennt man „Schargerade“ (eine Gerade aus dieser Schar). Die üblichen Fragen bei Geradenscharen sind Nullstellen (also y=0 setzen und nach „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008427" }

  • Schnittpunkt Gerade-Kreis berechnen, Beispiel 3 | V.06.02

    Schnitt Gerade Kreis: Schneidet man beides, erhält man normalerweise zwei Punkte [Die Gerade heißt dann Sekante]. Falls die Gerade die Gerade berührt, hat man einen einzigen Schnittpunkt [es wäre ein Berührpunkt, die Gerade heißt dann Tangente]. Falls die Gerade am Kreis vorbeiläuft gibt es natürlich keinen Schnittpunkt [die Gerade heißt Passante]. Rechnerisch geht es ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010530" }

  • Steckbriefaufgaben zu Parabel mit Scheitelpunkt und Punkt | A.04.16

    Hat man von einer beliebigen Parabel den Scheitelpunkt und irgend einen anderen Punkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man zuerst die Koordinaten des Scheitelpunkts in die Scheitelform ein. Danach setzt man den anderen Punkt und kann „a“ berechnen. Im Detail: die Scheitelform lautet ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008527" }

  • Teilverhältnis, Beispiel 3 | V.10.02

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010669" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 1 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009486" }

  • Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009342" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009332" }

  • Beschränktes Wachstum berechnen, Beispiel 5 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009328" }

  • Wurzel von komplexen Zahlen ziehen | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009754" }

  • Steckbriefaufgaben zu Parabel mit Scheitelpunkt und Punkt, Beispiel 2 | A.04.16

    Hat man von einer beliebigen Parabel den Scheitelpunkt und irgend einen anderen Punkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man zuerst die Koordinaten des Scheitelpunkts in die Scheitelform ein. Danach setzt man den anderen Punkt und kann „a“ berechnen. Im Detail: die Scheitelform lautet ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008529" }

Seite:
Zur ersten Seite Eine Seite zurück 74 75 76 77 78 79 80 81 82 83 84 85 Eine Seite vor Zur letzten Seite