Ergebnis der Suche (5)

Ergebnis der Suche nach: (Freitext: VERFAHREN) und (Systematikpfad: MATHEMATIK)

Es wurden 124 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Lineare Gleichungssysteme

    Erklärungen, Übungen und didaktische Hinweise zu linearen Gleichungssystemen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00019052" }

  • Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.06

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010159" }

  • LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.03

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010148" }

  • Matrix lösen: keine Lösung, unlösbar, Widerspruch | M.02.06

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010157" }

  • Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.06

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010158" }

  • Näherungsverfahren und Näherungslösungen | A.32

    Sie werden es vielleicht nicht glauben, aber Mathematik kann man für die Praxis anwenden. Und da reichen meist Näherungslösungen. Es gibt Näherungslösungen um Gleichungen zu lösen (Newton-Verfahren, Intervallhalbierung), es gibt Näherungsverfahren um Flächen/Integrale zu berechnen (Keplersche Fassregel, Simpson-Formel) und man kann komplizierte Funktionen durch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009355" }

  • LGS lösen: keine Lösung, unlösbar, Widerspruch | M.02.03

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010146" }

  • LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.03

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010147" }

  • Flip the Classroom: Hesse'sche Normalenform

    In diesem Lernvideo von Flip the Classroom wird zunächst das anschauliche, aber sehr umständlich zu rechnende Verfahren zur Abstandsbestimmung von Punkt und Ebene mittels des Lotfußpunktes erläutert. Anschließend wird die Hesse'sche Normalenform eingeführt und mit ihrer Hilfe sehr elegant uns schnell Abstandsaufgaben gelöst.

    Details  
    { "HE": [] }

  • Determinante berechnen bei 4x4-Matrizen | M.04.03

    Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010199" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite